Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 1, 2026
-
Abstract A mooring array has been maintained across the West Greenland shelf and slope since 2014 as part of the Overturning in the Subpolar North Atlantic Program (OSNAP). Here, we use the first 8 years of data to investigate the interannual variability of the two overflow water components of the deep western boundary current (DWBC): the Denmark Strait Overflow Water (DSOW) and the Northeast Atlantic Deep Water (NEADW). While the velocity structure has remained similar throughout the record, both water masses have freshened considerably, especially the NEADW salinity core. Using revised density criteria to define these two components, their transports decreased significantly between 2014 and 2022: from 6.2 to 3.8 Sv (1 Sv ≡ 106m3s−1) (−0.33 Sv yr−1) for the DSOW and from 5.4 to 4.1 Sv (−0.19 Sv yr−1) for the NEADW. Since the overflows across the Denmark Strait and the Faroe Bank Channel have remained steady over this period, this points to decreased entrainment downstream of the sills as a possible mechanism for the observed transport reduction south of Greenland. Using shipboard and mooring data from the two sills, and a hydrographic database for the surrounding region, we predict the downstream transport of the two DWBC components via the framework of a streamtube model. The predicted transport explains 94% of the observed DSOW trend and 63% of the observed NEADW trend. This implies that further entrainment of the NEADW must occur during its long pathlength, which would also help explain the fresher-than-predicted NEADW salinity observed at the OSNAP array.more » « lessFree, publicly-accessible full text available November 1, 2026
-
Abstract The warm-to-cold densification of Atlantic Water (AW) around the perimeter of the Nordic Seas is a critical component of the Atlantic Meridional Overturning Circulation (AMOC). However, it remains unclear how ongoing changes in air-sea heat flux impact this transformation. Here we use observational data, and a one-dimensional mixing model following the flow, to investigate the role of air-sea heat flux on the cooling of AW. We focus on the Norwegian Atlantic Slope Current (NwASC) and Front Current (NwAFC), where the primary transformation of AW occurs. We find that air-sea heat flux accounts almost entirely for the net cooling of AW along the NwAFC, while oceanic lateral heat transfer appears to dominate the temperature change along the NwASC. Such differing impacts of air-sea interaction, which explain the contrasting long-term changes in the net cooling along two AW branches since the 1990s, need to be considered when understanding the AMOC variability.more » « less
-
Abstract We present the first continuous mooring records of the West Greenland Coastal Current (WGCC), a conduit of fresh, buoyant outflow from the Arctic Ocean and the Greenland Ice Sheet. Nearly two years of temperature, salinity, and velocity data from 2018 to 2020 demonstrate that the WGCC on the southwest Greenland shelf is a well-formed current distinct from the shelfbreak jet but exhibits strong chaotic variability in its lateral position on the shelf, ranging from the coastline to the shelf break (50 km offshore). We calculate the WGCC volume and freshwater transports during the 35% of the time when the mooring array fully bracketed the current. During these periods, the WGCC remains as strong (0.83 ± 0.02 Sverdrups; 1 Sv ≡ 106m3s−1) as the East Greenland Coastal Current (EGCC) on the southeast Greenland shelf (0.86 ± 0.05 Sv) but is saltier than the EGCC and thus transports less liquid freshwater (30 × 10−3Sv in the WGCC vs 42 × 10−3Sv in the EGCC). These results indicate that a significant portion of the liquid freshwater in the EGCC is diverted from the coastal current as it rounds Cape Farewell. We interpret the dominant spatial variability of the WGCC as an adjustment to upwelling-favorable wind forcing on the West Greenland shelf and a separation from the coastal bathymetric gradient. An analysis of the winds near southern Greenland supports this interpretation, with nonlocal winds on the southeast Greenland shelf impacting the WGCC volume transport more strongly than local winds over the southwest Greenland shelf.more » « less
-
The most famous ocean current, the Gulf Stream, is part of a large system of currents that brings warm water from Florida to Europe. It is a main reason for northwestern Europe’s mild climate. What happens to the warm water that flows northward, since it cannot just pile up? It turns out that the characteristics of the water change: in winter, the ocean warms the cold air above it, and the water becomes colder. Cold seawater, which is heavier than warm seawater, sinks down to greater depths. But what happens to the cold water that disappears from the surface? While on a research ship, we discovered a new ocean current that solves this riddle. The current brings the cold water to an underwater mountain ridge. The water spills over the ridge as an underwater waterfall before it continues its journey, deep in the ocean, back toward the equator.more » « less
An official website of the United States government
